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Design of Lectin Mimetics

Monika Mazik*™

The molecular recognition of carbohy-
drates by proteins mediates a variety of
essential biological processes. The most
intensively studied class of carbohydrate-
binding proteins are lectins, which are
widely found in nature including in
plants, animals, viruses, and bacteria. As
pointed out by Lis and Sharon “lectins
bind mono- and oligosaccharides reversi-
bly and with high specificity, but are
devoid of catalytic activity, and in con-
trast to antibodies, are not products of
an immune response”.'® Lectins act as
recognition determinants in diverse bio-
logical processes, such as clearance of
glycoproteins from the circulatory
system, adhesion of infectious agents to
host cells and recruitment of leukocytes
to inflammatory sites, as well as cell in-
teractions in the immune system, in ma-
lignancy and metastasis."**' They play a
key role in the control of various normal
and pathological processes in living or-
ganisms. Some relatively well-character-
ized lectins are those utilized by patho-
gens as a means of attachment to eu-
karyotic cell surfaces. Examples of lectins
involved in this process include the he-
magglutinins of influenza and other vi-
ruses (see Scheme 1D and E) as well as
the toxins produced by Gram-negative
bacteria.” The affinity of lectins for
monosaccharides is usually weak, with
association constants in the millimolar
range."*® However, creating extended
binding regions capable of interacting
with more than just a single monosac-
charide residue of an oligosaccharide
and/or clustering of several identical
binding sites by formation of protein
oligomers results in high affinities for oli-
gosaccharides."*>? Calorimetric studies
revealed that protein-carbohydrate in-
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Scheme 1. Examples of hydrogen bonds in the complexes of A) Galanthus nivalis lectin with mannose,
B) concanavalin A with Mana6(Mana3)Man, C) peanut agglutinin with Gal(31-3)GalNAc, D), E) rhesus ro-
tavirus hemagglutinin with 2-a-O-methyl N-acetylneuraminic, and F), G) polyoma virus with NeuAc(a.2-
3)GalB4Glc (sugar units are shown in grey).">® Tyr A97, Asn A93 and GIn A89 are the contact residues
in the combining site of subdomain 1 of the lectin.

teractions are enthalpy driven, and, in
almost all cases, the enthalpy of binding
is more negative than, or equal to, the
free energy of binding.®¥ The calorimet-
ric data also showed strong linear en-
thalpy-entropy compensation.**"
Despite the important roles that pro-
tein-carbohydrate interactions play in a
wide range of biological recognition pro-
cesses, the molecular details of these
recognition events are generally not well
understood. The structural basis for se-
lective sugar recognition by lectins has
been investigated by X-ray crystallogra-
phy. According to the results of the X-
ray analyses, the biological recognition
processes involving neutral sugars use
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hydrogen-bonding (both neutral and
charge-reinforced; see Scheme 1 A-C), in-
teractions of sugar CHs with aromatic
residues of the protein (often one or two
aromatic residues stack on the sugar
ring), oxygen-metal ion coordination,
and van der Waals forces for sugar bind-
ing.'*®2 Furthermore, ion pairing and
ionic hydrogen-bonding are frequently
observed in the complexation of pro-
teins with ionic sugars (see Scheme 1D-
F), such as with N-acetylneuraminic acid
(NeuAc), which is the most commonly
occurring sialic acid. Quiocho et al. point-
ed out that “hydrogen bonds are the
main factors in conferring specificity and
affinity to protein—carbohydrate interac-
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tions”.” The hydrogen bonds have both
neutral and ionic character, and are both
direct and  water-mediated  (see
Scheme 1). The sugar OH groups usually
participate in cooperative hydrogen
bonds simultaneously as donors and ac-
ceptors. Carboxylate side chains play a
role in anomeric- and epimeric-specific
sugar recognition. Divalent cations, such
as Ca’" and Mn?*, are involved in carbo-
hydrate recognition either indirectly, by
shaping the combining site, or through
direct binding to the carbohydrate (as in
the C-type lectins, which require Ca’*
for activity).

It should be noted that the driving
force for carbohydrate binding by lectins
is still uncertain. In particular, the role of
water in natural carbohydrate recogni-
tion is a controversial issue.*¥ (For dis-
cussions on the role of solvent reorgani-
zation in molecular recognition of carbo-
hydrates, see refs. [3b,4a, b].)

On the one hand, the protein-carbo-
hydrate interactions inspire the develop-
ment of artificial receptor structures for
the recognition of carbohydrates.” On
the other hand, artificial carbohydrate re-
ceptors operating through noncovalent
interactions provide valuable model sys-
tems for studying the basic molecular
features of carbohydrate recognition. Ad-
vances in this area are likely not only to
provide insight into the molecular recog-
nition phenomenon, but also to facilitate
the development of new therapeutic
agents or chemosensors.

Because of subtle variations in the
sugar structures and the three-dimen-
sional arrangement of their functionality,
the design of selective and effective bio-
mimetic receptors for these ubiquitous
and important biomolecules still repre-
sents a significant challenge. In particu-
lar, recognition in aqueous media
through noncovalent interactions, in
which solvent molecules compete signifi-
cantly for the receptor binding sites, is a
challenging goal of artificial receptor
chemistry. It should be noted that neu-
tral carbohydrates are especially chal-
lenging substrates to recognize.”

A recent interesting development
from the group of Davis is the tetracyclic
receptor 2,”) which was inspired by car-
bohydrate-binding proteins and repre-
sents an extended version of the biphen-
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Scheme 2. Structures of receptors 1a, 1b, and 2. Colour code for 2: meta-terphenyl units, blue; iso-
phthalamide units, red and magenta; water-solubilizing tricarboxylate units, green. Adapted from
ref. [9] with permission. Copyright 2007, American Association for the Advancement of Science.

yl-based tricyclic polyamide receptor 1
(Scheme 2).%'% The architectures 1 and
2 were designed to provide both apolar
and polar contacts to a mono- or disac-
charide molecule, respectively, to mimic
the interactions in protein-carbohydrate
complexes.

The tricyclic core 1 was specifically tar-
geted at B-glucosyl derivatives 3. It was
supposed that the axial hydrogens in 3
would participate in CH-m interactions
with the biphenyl groups, while the
equatorial substituents would form hy-
drogen bonds to the isophthalamide
units. Accordingly, 1a showed high affin-

3a HO

ity for 3b but was less effective for the
octyl a-b-glucopyranoside or [-p-galac-
topyranoside."” The authors have shown
that, in the form 1b, the tricyclic cage 1
can bind carbohydrates in water with
low affinities (the binding constant for
1b-3¢ was found to be 32m™"), but sig-
nificant  selectivities.™ The designed
preference for (-glucosyl, which was
previously demonstrated in organic
solvents," is retained in the aqueous
medium.

The meta-terphenyl-based tetracyclic
receptor 2 was developed to target all-
equatorial disaccharides, such as cello-
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biose."" The binding properties of recep-
tor 2 were investigated by nuclear mag-
netic resonance, fluorescence spectros-
copy, induced circular dichroism, and cal-
orimetry in D,0 or H,0. The receptor
showed good affinities (for example, -
cellobioside 4b was bound with K,~
900m~") and remarkable selectivities for
its chosen substrate in the aqueous solu-
tions. It should be noted that the K,
value for 2-4b (approaching 10°m™) is
comparable to that for many lectin-car-
bohydrate interactions (see above). To
assess its selectivity, receptor 2 was
tested against ten disaccharides and
three monosaccharides; the selectivity
for cellobiose versus nontarget disac-
charides was generally ~50:1. Interest-
ingly, the cellobiose complex (2-4a) was
formed nearly exclusively in the pres-
ence of an 18-fold excess of nontarget
carbohydrate; thus, like in natural lectin,
receptor 2 is able to bind its target from
a complex mixture of potential sub-
strates. Calorimetric studies showed that
complex formation between 2 and 4a is
mainly enthalpically driven, and the bal-
ance between enthalpy and entropy lies
within the range observed for lectins,
thus supporting a lectin-like binding
mode.

The binding studies with receptor 2
showed that affinities, selectivities and
thermodynamic parameters all lie within
the spread of values observed for lectins;
thus, as mentioned by the authors, re-
ceptor 2 can be seen as a “synthetic
lectin analogue”.”’ Receptor 2 provides a
valuable model system for studying the
underlying principles of carbohydrate-
based molecular recognition processes.

It should be noted that many ques-
tions remain open concerning the contri-
bution of individual bonding interactions
to selective carbohydrate recognition,
the role of apolar association and the
character of carbohydrate-aromatic in-
teractions.'>1%

The design of “lectin mimetics” is an
important and exciting field of supra-
molecular and biomimetic chemistry. The
ubiquity of lectin-carbohydrate interac-
tions opens enormous potential for the
exploitation of lectin mimetics in medi-
cine. Such synthetic systems could be
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used to prevent and treat bacterial and
viral infections, inflammations and per-
haps even cancer."? In addition, carbo-
hydrate receptors could be used to sepa-
rate carbohydrates or glycoconjugates,
or as saccharide sensors. Further work is
needed to develop both effective and
selective biomimetic carbohydrate recep-
tors, and to establish the potential of
these systems in medicine, analytical
chemistry and other areas. A lot of prob-
lems have not yet be solved and will
doubtless be the subject of many rich
and innovative studies in the future.
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